Skip to main content

Vascular Endothelial Growth Factor: Adaptive Changes in the Neuroglialvascular Unit

Buy Article:

$68.00 + tax (Refund Policy)

Brain postnatal development is modulated by adaptation and experience. Experience-mediated changes increase neuronal activity leading to increased metabolic demands that involve adaptive changes including ones at the microvascular network. Therefore, vascular environment plays a key role in central nervous system (CNS) development and function in health and disease. Trophic factors are crucial in CNS development and cell survival in adults. They participate in protection and proliferation of neuronal, glial and endothelial cells. Among the most important molecules are: the proangiogenic vascular endothelial growth factor (VEGF), the neurotrophin brain derived neurotrophic factor (BDNF), insulin growth factor (IGF-I) and the glycoprotein erythropoietin (EPO). We propose the term angioglioneurins to define molecules acting on the three components of the neurogliovascular unit. We have previously reported the effects of environmental modifications on the three components of the neurogliovascular unit during the postnatal development. We have also described the main role played by VEGF in the experience-induced postnatal changes. Angioglioneurin administration, alone or in combination with other neuroprotective strategies such as environmental enrichment, has been proposed as a non-invasive therapeutic strategy against several CNS diseases.





Keywords: Angioglioneurins; CNS; Hebb; VEGF; Vascular; cortex; enucleation; environmental enrichment; neuroglialvascular; neurogliovascular unit; neuroprotection; neurorestoration; perineural; postnatal; somatosensory; tetrodotoxin

Document Type: Research Article

Publication date: 01 February 2012

More about this publication?
  • Current Neurovascular Research (CNR) provides a cross platform for the publication of scientifically rigorous research that addresses disease mechanisms of both neuronal and vascular origins in neuroscience. The journal serves as an international forum for the publication of novel and pioneering original work as well as timely neuroscience research reviews in the disciplines of cell developmental disorders, plasticity, and degeneration that bridge the gap between basic science research and clinical discovery. CNR emphasizes the elucidation of disease mechanisms, both cellular and molecular, which can impact the development of unique therapeutic strategies for neuronal and vascular disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content