Skip to main content

HIV-1 Vpr: Enhancing Sensitivity of Tumors to Apoptosis

Buy Article:

$68.00 + tax (Refund Policy)

Cancers can adapt several evasive functions including apoptosis evasion, self-sufficiency in growth signals, insensitivity to anti-growth signals, sustained angiogenesis, limitless replication potential, tissue invasion and metastasis. The invariable hurdle for development of therapies against such aberrant conditions requires both selective and potent cytotoxicity. Analysis of HIV-1 Vpr's apoptotic and anti-proliferative activity have revealed potentially important implications for cancer therapy. Accordingly, we have reviewed the properties of Vpr that will likely contribute to its efficacious function as an anti-tumor agent. Among these are its ability to induce cell cycle arrest, inhibit inflammation, provoke p53 independent apoptosis, and selective killing of rapidly dividing cells.

Keywords: cancer; caspase and apoptosis; hiv-1; mitochondria; nf-kappab; p53; vpr

Document Type: Review Article

Affiliations: Dept. of Pathology & Lab.Medicine University of Pennsylvania School of Medicine 505 Stellar Chance Laboratories 422 Curie Blvd. Philadelphia, PA 19104, USA.

Publication date: 01 October 2004

More about this publication?
  • The aim of Current Drug Delivery is to publish peer-reviewed articles, short communications, short and in-depth reviews in the rapidly developing field of drug delivery. Modern drug research aims to build in delivery properties of a drug at the design phase, however in many cases this ideal cannot be met and the development of delivery systems becomes as important as the development as the drugs themselves.

    The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.

    The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content