Skip to main content

Open Access Detection of Mouse Parvovirus in Mus musculus Gametes, Embryos, and Ovarian Tissues by Polymerase Chain Reaction Assay

We used primary and nested polymerase chain reaction (PCR) assays to determine the presence of mouse parvovirus (MPV) in mouse sperm, oocytes, preimplantation embryos, and ovarian tissues collected from MPV-infected mice. The primary PCR assay detected MPV in 56% of the sperm samples. MPV was not eliminated by passing sperm samples through a Percoll gradient. After Percoll treatment, MPV was still present in 50% of the samples according to primary PCR assay. Oocyte samples that did not undergo extensive washing procedures had detectable MPV in 7% of the samples based on the primary PCR assay, but nested PCR assay detected higher (28%) infection rate. However, MPV was not detected in oocytes that underwent extensive washing procedures, as assessed by either primary or nested PCR assay. Although primary PCR did not detect MPV in embryos, a nested PCR assay determined that 50% of the embryos were positive for the virus. In addition, ovarian tissues were collected from 3 different mouse colonies with enzootic MPV infection. Ovarian tissue collected from 129CT, 101/R1, and Sencar mice had high incidence (38%, 63%, and 65%, respectively) of MPV infection on the basis of nested PCR amplification. These results demonstrate that mouse gametes, embryos, and ovarian tissues may be contaminated with MPV and therefore caution is necessary when infected germplasm is used for assisted reproductive technologies such as embryo transfer, establishing embryonic stem cell lines, in vitro fertilization, ovary transplantation, and intracytoplasmic sperm injection.

Document Type: Miscellaneous

Publication date: 01 February 2007

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content