Skip to main content

Rational Drug Design Paradigms: The Odyssey for Designing Better Drugs

Buy Article:

$68.00 + tax (Refund Policy)

Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

Keywords: AT1R; AT2R; Drug design; LigandScout; MAGL; metallotherapeutics; molecular docking; olmesartan; pharmacophore screening; virtual screening

Document Type: Research Article

Publication date: 01 January 2015

More about this publication?
  • Combinatorial Chemistry & High Throughput Screening publishes full length original research articles and reviews describing various topics in combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) and/or high throughput screening (e.g. developmental, practical or theoretical). Ancillary subjects of key importance, such as robotics and informatics, will also be covered by the journal. In these respective subject areas, Combinatorial Chemistry & High Throughput Screening is intended to function as the most comprehensive and up-to-date medium available. The journal should be of value to individuals engaged in the process of drug discoveryand development, in the settings of industry, academia or government.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content