Skip to main content

Conformational Changes and Aggregation of Expanded Polyglutamine Proteins as Therapeutic Targets of the Polyglutamine Diseases: Exposed β-Sheet Hypothesis

Buy Article:

$68.00 + tax (Refund Policy)

The polyglutamine (polyQ) diseases, including Huntington's disease and spinocerebellar ataxias, are classified as the protein misfolding neurodegenerative diseases like Alzheimer's and Parkinson's diseases, and they are caused by an abnormal expansion of the polyQ stretch in disease-causative proteins. Expanded polyQ stretches have been shown to undergo a conformational transition to a β-sheet-dominant structure, leading to assembly of the host proteins into insoluble β-sheet-rich amyloid fibrillar aggregates and their subsequent accumulation as inclusion bodies in affected neurons, eventually resulting in neurodegeneration. Based on cytotoxicity of the soluble β-sheet monomer of the expanded polyQ protein, we propose the “Exposed β-sheet hypothesis”, in which both the toxic β-sheet conformational transition and misassembly into amyloid fibrils of the disease-causative proteins contribute to the pathogenesis of the polyQ diseases, and possibly the other protein misfolding neurodegenerative diseases. Among the various therapeutic targets, the toxic conformational changes and aggregation of the expanded polyQ proteins are most ideal since they are the earliest events in the pathogenic cascade, and therapeutic approaches using molecular chaperones, intrabodies, peptides, and small chemical compounds have been developed to date. Furthermore, high-throughput screening approaches to identify polyQ aggregate inhibitors are in progress. We hope that protein aggregate inhibitors which are widely effective not only for the polyQ diseases, but also for many neurodegenerative diseases will be discovered in the near future.

Keywords: Huntington's disease; Polyglutamine diseases; aggregate inhibitors; amyloid fibrils; conformational changes; high-throughput screening; molecular chaperones; protein aggregation

Document Type: Research Article

Affiliations: Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan.

Publication date: 01 October 2008

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content