Skip to main content

CD36-TSP-HRGP Interactions in the Regulation of Angiogenesis

Buy Article:

$68.00 + tax (Refund Policy)

Thrombospondin (TSP)-1 and -2 are potent inhibitors of angiogenesis in vivo and of microvascular endothelial cell responses to angiogenic factors in vitro. The anti-angiogenic activity of thrombospondins is contained in a structural domain known as the TSP type I repeat or TSR. TSR domains are present in many other proteins, several of which have also been shown to have anti-angiogenic activity and a peptide-mimetic drug based on the domain is in clinical trials as an anti-angiogenic anti-cancer therapy. We have identified CD36 as the endothelial cell receptor for TSP-1 and -2 and showed that it is necessary for their anti-angiogenic activity. CD36-mediated antiangiogenic activity in endothelial cells is due to its ability to activate a specific signaling cascade that results in diversion of a proangiogenic response to an apoptotic response. Recently we identified a circulating protein, histidine-rich glycoprotein (HRGP), that contains a CD36 homology domain and that acts as a soluble decoy to block the anti-angiogenic activities of TSPs, thereby promoting angiogenesis. The tripartite interactions among CD36, TSR domains and HRGP in tissues may play an important role in regulating physiological and pathological angiogenesis.

Keywords: Angiogenesis; CD36; HRGP; TSP-1; TSP-2; endothelial cells

Document Type: Research Article

Affiliations: Chair, Department of Cell Biology, Lerner Research Institute, NC10, Cleveland Clinic Foundation,9500 Euclid Ave, Cleveland, OH 44195, USA.

Publication date: 01 December 2007

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content