Skip to main content
padlock icon - secure page this page is secure

Estimation of Greenhouse Gas Emissions by the Wastewater Treatment Plant of a Locomotive Repair Factory in China

Buy Article:

$22.00 + tax (Refund Policy)

This study analyzed greenhouse gas (GHG) emissions from a wastewater treatment plant (WWTP) that uses a combination of physical, chemical, and biological processes and estimated the emissions generated from treatment of oil-rich wastewater from a locomotive repair factory in China. The WWTP produces 526.8 t CO 2-equivalent/a corresponding to 4.3 t CO 2-equivalent/t oil removed. The combustion of fossil fuels for onsite energy generation is the major source of GHG, accounting for 79.7% of overall emissions. Use of chemicals for metal cleaning, flocculation, and pH control accounts for 13.4% emissions; anaerobic digestion accounts for 3.8% emissions; and the transport of solid waste and subsequent generation of landfill biogas account for 3.1% emissions. Theoretical analysis of various process design alternatives demonstrated that the recovery of biogas produced during anaerobic sludge digestion and its use as fuel reduces the emissions of GHG by 93.9 t CO 2-equivalent/a, which is 15.1% of the overall emissions of the treatment plant. The use of aerobic digestion instead of anaerobic digestion in this plant did not significantly effect GHG emissions. Using anaerobic digestion for sludge treatment and releasing the generated CH 4 into the atmosphere without further flaring or recovery increased GHG emissions the greatest. The reuse of waste oil and proper management of solid waste are recommended as effective ways of reducing GHG emissions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Greenhouse gases; anaerobic digestion; emission coefficient; oil-rich wastewater; solid waste

Document Type: Research Article

Publication date: 01 December 2008

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more