Skip to main content
padlock icon - secure page this page is secure

Open Access A review of thermal and humidity management needs and feasible solutions for next generation subsea electric systems

Download Article:
 Download
(PDF 890.7 kb)
 
Reliable power supply is required for operating subsea installations, such as enhanced oil recovery systems, tidal power generator systems and benthic environment monitoring stations. Electrical and electronic systems need to be operated inside pressure-rated or pressure-compensated enclosures so as to protect them from external seawater and hydrostatic pressure. Such enclosures are nitrogen filled, partially oil filled, fully oil filled or pressure compensated. System breakdowns lead to huge production losses and loss of critical environmental data. Reliability and, hence, the useful life of the internal systems depend mainly on the internal ambient temperature and relative humidity levels. The present paper discusses the need for efficient thermal and humidity management, methods currently adopted in the industry and their limitations in long-term operation. Solutions to carry out effective thermal and humidity management in future subsea electric systems, with the objective of reduced maintenance over the design lifetime of the system, are discussed. The proposed thermal management techniques include use of static fans, thermoelectric coolers, acoustic-based heat transfer and bio-fouling control methods. Proposed humidity management techniques include thermo-siphon-based water removal, and in situ subseabased molecular sieve oil filtration. Further, the advantages of pressure compensation in overcoming the thermal and enclosure structural challenges are explained. The ongoing global efforts in the development of pressure-tolerant systems, significant findings on the component behaviour to pressure and the need for accelerating pressure-tolerant electronic developments are discussed.

23 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ACOUSTIC PRESSURE; BIO-FOULING; COOLING; CORONA; MOLECULAR SIEVES; THERMOELECTRIC COOLING

Document Type: Research Article

Publication date: July 1, 2014

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more