Skip to main content
padlock icon - secure page this page is secure

Prediction of Noise and Acoustical Spectrum of Counter-Rotating Propellers

Buy Article:

$40.00 + tax (Refund Policy)

The acoustical performance of a counter-rotating marine propeller system is computed using the Ffowcs, Williams and Hawkings (FWH) algorithm. The solution procedures, where finite volume computational fluid dynamics calculations were exploited, was validated with a conventional propeller having experimental results (namely David Taylor Model Basin [DTMB] 4119). The large eddy simulation formulation and the sliding mesh technique are employed to build thrust and torque curves. Mesh dependency, turbulence model, and discretization schemes were all assessed to have repeatable and accurate results. Because the application under consideration involved inhomogeneous flow and blade interactions, DTMB 3684 and 3685 counter-rotating propeller (CRP) models were used for comparisons. In terms of validation of numerical acoustics, the acoustical model evaluation study was first performed on a flow over a cylinder and a rain gutter model. The FWH approach produced good results for the spectrum at near-field and far-field locations. The performance of an inclined propeller, namely VP1304, in a noncavitating condition was investigated and the results were compared with the experiments conducted at the Potsdam Model Basin. Pressure pulses of this propeller in the cavitation tunnel were also attained and compared with experimental results. The amplitudes of the pressure fluctuations were in good agreement with the experimental data except for the weak third harmonics. Last, the generic form of the CRP system attached to an underwater vehicle body was considered to investigate the acoustic spectrum in terms of blade passing frequencies, interacted harmonics and radiated noise.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: acoustical spectrum; counter-rotating propeller; experiment

Document Type: Research Article

Publication date: September 1, 2018

This article was made available online on September 5, 2018 as a Fast Track article with title: "Prediction of Noise and Acoustical Spectrum of Counter-Rotating Propellers".

More about this publication?
  • The Journal of Ship Research is a quarterly publication providing highly technical papers on applied research in hydrodynamics, propulsion, ship motions, structures, and vibrations. While the Journal requires that papers present the results of research that advances ship and ocean science and engineering, most contributions bear directly on other disciplines, such as civil and mechanical engineering, applied mathematics, and numerical analysis. High quality papers are contributed from the U.S., Canada and overseas, with representation from established authorities as well as new researchers.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more