Skip to main content
padlock icon - secure page this page is secure

Assessing the Probability of the Dynamic Capsizing of Vessels

Buy Article:

$40.00 + tax (Refund Policy)

Current naval vessel design requirements for reduced signature may drive industry toward unconventional hull forms, such as the tumblehome, for some vessels. There is a critical need to develop a system-based approach to intact and damaged dynamic capsize assessment that addresses risk identification and mitigation strategies, such as design methodologies, onboard “smart systems” for operator guidance, real-time seaway monitoring for critical conditions, monitoring extreme seaway ship handling trainers, and probability-based tools for risk assessment. Development of a system-based approach will also improve ship safety and allow the development of unconventional ship designs that rely on a variety of systems, including inherent design characteristics for minimizing intact and damaged dynamic capsize risk. Availability of new intact and damaged dynamic capsize design methods and risk mitigation technologies will benefit both industry and the US Navy by breaking through the barrier of empirical methodologies for stability assessment currently in use. In this paper, an innovative method for computing the probability of dynamic capsizing of vessels is provided. The computation can be based on numerical simulation data or experimental data. In this paper, the method is illustrated using numerical simulation data applied to a hypothetical vessel. The suggested method utilizes the time to capsizing as a primary random variable for assessing the resulting time-dependent probability. The method utilizes models from reliability analysis based on life data, including the Kaplan-Meier technique, and would enable engineers to examine the run duration of tests, plan future tests including test repetition needs, and interpolate and predict capsizing probabilities under operational conditions that are not tested. In addition, the method could offer a basis for developing a system-based approach to assessing intact and damaged stability, navigation guidance procedures, and future risk-based navigation systems that include the initial design of hull forms, navigation procedures including human factors, and stability criteria. The method developed in this paper is presented using numerical simulation results for one vessel for the purpose of illustration. The illustration of the method starts with computing the timedependent capsizing probabilities under various operational conditions of speed, heading, and random wave characteristics, called operational cells. Then probability distributions were fitted to the data and used for prediction purposes to gain additional insights, make observations, and draw conclusions for additional work. The case study results also produced recommendations for future work.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Miscellaneous

Publication date: December 1, 2006

More about this publication?
  • The Journal of Ship Research is a quarterly publication providing highly technical papers on applied research in hydrodynamics, propulsion, ship motions, structures, and vibrations. While the Journal requires that papers present the results of research that advances ship and ocean science and engineering, most contributions bear directly on other disciplines, such as civil and mechanical engineering, applied mathematics, and numerical analysis. High quality papers are contributed from the U.S., Canada and overseas, with representation from established authorities as well as new researchers.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more