Skip to main content

Open Access Exploring and Leveraging the basic principle for molecular reduction catalysis of biorenewables, CO2, and plastics using light, electric and heat energy

Biorenewable energy and chemicals hold great promise for a greener, more sustainable future. Biomass is organic materials that can be used to generate electricity and gas in the form of bioenergy. Catalysis is required to convert the biomass into a useful form. At the Saito Research Group in the Noyori Laboratory at the Graduate School of Science, Nagoya University, Japan, Professor Susumu Saito and the team are engaged in the design and development of catalysts for exactly this. In one line of research, the team is developing upcycling catalysts for highly oxidised chemical compounds (HOCs). The idea is that these catalysts can be used to quickly and efficiently synthesise high-value-added organic molecules from carbon resources. In another project, the researchers are exploring organic synthesis based on one electron transfer from H2 or H2O using molecular and semiconductor photocatalysis. One electron (radical) species (OES) such as hydrogen atom (H•) can be produced from the homolytic cleavage of chemical bonds of H2 or H2O, occurring by visible/near-UV light energy inducing photo-excited states of tailored homogeneous and heterogeneous (semiconductor) catalysts. These OESs can be used in addition reactions and H-abstraction reactions to generate carbon-centred radical species and achieve artificial photosynthesis directed toward selective organic synthesis (APOS). A key focus for the team is on molecular metal catalysis. They designed novel (PNNP)M catalysts, with the PNNP representing two-phosphine and two-nitrogen coordinative atoms and the M representing metals, from which they derived robust reduction/dehydration catalysts with catalytic activity that can be sustained for a long period of time under visible light, electric and heat energy.

Keywords: AMIDES; BIOACTIVE ORGANIC COMPOUNDS; BIOMASS; BIORENEWABLE ENERGY; CARBON‐CARBON BOND FORMATION; CARBOXYLIC ACIDS; CO2; DEHYDRATION; ESTERS; GREENER SOCIETIES; HIGHLY OXIDISED COMPOUNDS; HIGHLY OXYGENATED COMPOUNDS; NOVEL REDUCTIVE SYSTEMS; ONE ELECTRON SPECIES; PHOTO-CATALYSIS; PLASTICS; RADICAL SPECIES; RENEWABILITY; UPCYCLING TRANSFORMATIONS

Document Type: Research Article

Affiliations: Nagoya University, Japan

Publication date: January 1, 2024

More about this publication?
  • Impact is a series of high-quality, open access and free to access science reports designed to enable the dissemination of research impact to key stakeholders. Communicating the impact and relevance of research projects across a large number of subjects in a content format that is easily accessible by an academic and stakeholder audience. The publication features content from the world's leading research councils, policy groups, universities and research projects. Impact is published under a CC-BY Creative Commons licence.

  • Subscribe to this Title
  • Terms & Conditions
  • Disseminating research in Impact
  • Information about Impact
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content