Skip to main content
padlock icon - secure page this page is secure

Open Access State-of-the-art Nanofabrication in Catalysis

Download Article:
 Download
(PDF 677.5 kb)
 
We present recent developments in top–down nanofabrication that have found application in catalysis research. To unravel the complexity of catalytic systems, the design and use of models with control of size, morphology, shape and inter-particle distances is a necessity. The study of well-defined and ordered nanoparticles on a support contributes to the understanding of complex phenomena that govern reactions in heterogeneous and electro-catalysis. We review the strengths and limitations of different nanolithography methods such as electron beam lithography (EBL), photolithography, extreme ultraviolet (EUV) lithography and colloidal lithography for the creation of such highly tunable catalytic model systems and their applications in catalysis. Innovative strategies have enabled particle sizes reaching dimensions below 10 nm. It is now possible to create pairs of particles with distance controlled with an extremely high precision in the order of one nanometer. We discuss our approach to study these model systems at the single-particle level using X-ray absorption spectroscopy and show new ways to fabricate arrays of single nanoparticles or nanoparticles in pairs over a large area using EBL and EUV-achromatic Talbot lithography. These advancements have provided new insights into the active sites in metal catalysts and enhanced the understanding of the role of inter-particle interactions and catalyst supports, such as in the phenomenon of hydrogen spillover. We present a perspective on future directions for employing top–down nanofabrication in heterogeneous and electrocatalysis. The rapid development in nanofabrication and characterization methods will continue to have an impact on understanding of complex catalytic processes.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ELECTROCATALYSIS; HETEROGENEOUS CATALYSIS; LITHOGRAPHY; NANOPARTICLES; SURFACE SCIENCE

Document Type: Research Article

Affiliations: 1: Institute for Chemical and Bioengineering ETH Zurich, CH-8093 Zurich, Laboratory for Micro and Nanotechnology Paul Scherrer Institute, CH-5232 Villigen, Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute, CH-5232 Villigen;, Email: [email protected] 2: Laboratory for Micro and Nanotechnology Paul Scherrer Institute, CH-5232 Villigen, Electrochemistry Laboratory Paul Scherrer Institute, CH-5232 Villigen 3: Electrochemistry Laboratory Paul Scherrer Institute, CH-5232 Villigen 4: Electrochemistry Laboratory Paul Scherrer Institute, CH-5232 Villigen, Laboratory of Physical Chemistry ETH Zurich, CH-8093 Zurich 5: Laboratory for Micro and Nanotechnology Paul Scherrer Institute, CH-5232 Villigen 6: Institute for Chemical and Bioengineering ETH Zurich, CH-8093 Zurich, Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute, CH-5232 Villigen

Publication date: April 1, 2017

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more