Skip to main content
padlock icon - secure page this page is secure

Open Access Active Sites, Deactivation and Stabilization of Fe-ZSM-5 for the Selective Catalytic Reduction (SCR) of NO with NH3

Download Article:
 Download
(PDF 460.3 kb)
 
Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH3, concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (Ea,app ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (Ea,app ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH3 can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO2 to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously.

46 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ACTIVE SITES; DEACTIVATION; FE-ZSM-5; SCR; SELECTIVE CATALYTIC REDUCTION; STABILIZATION

Document Type: Research Article

Affiliations: 1: Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. [email protected] 2: Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Publication date: September 1, 2012

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more