Skip to main content
padlock icon - secure page this page is secure

Open Access Integrative Risk Assessment of Endocrine Disruptors in Switzerland

Download Article:
 Download
(PDF 1,330.4 kb)
 
The objective of the project was to develop an environmental fate model for various substances with endocrine-disrupting potential for the Glattal/Greifensee region in Switzerland and to assess the concentration levels. The model provides an estimate of environmental concentrations based on mass flow calculations from the source of the emissions to the final fate in the environmental compartments. Based on the chemical properties of 20 substances studied in the NRP50 program, the estimated quantities of the substances used and their respective applications, the model predicts mass flows on a local level. Taking into account the respective water flows, these mass flows result in predicted environmental concentrations in surface water and groundwater. These concentrations can be interpreted as averaged levels with geographical resolution in the local scenario. The estrogenic equivalent concentration was assessed by estrogenic equivalence factor-weighted addition of the individual substance concentrations for four different toxicological endpoints. From the 20 substances modelled in this project only a few substantially contribute to the overall endocrine disruption potential. For three of the endpoints used the steroid hormones dominate the endocrine potential. Only the application of the yeast estrogen system (YES) assay predicts a dominant endocrine potential for the degradation products of nonylphenol-poly-ethoxylates (NPnEO) in the year 2004, which was expected to decrease significantly in the year 2007 due to new legislation (almost complete application ban of NPnEO-based detergents as of August 2006). On the basis of the model's geographical resolution it is possible to identify 'hot spots' in terms of high endocrine-disruption potential in the modelled region. For the densely populated and industrialised Glattal/Greifensee region sewage treatment plants discharging into relatively small receiving water systems show the highest endocrine disruption potential (estradiol equivalence concentration of up to 2 ng/l for the vitellogenin synthesis induction endpoint). In addition to modelling the status quo with respect to endocrine disruption possible future risk reduction measures have been assessed for one identified hot-spot. Whereas an increase in sludge retention time in the existing STP had a moderate effect on the overall endocrine potential, an additional ozonation step showed significant reduction for most endocrine-disrupting substances.

19 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ENDOCRINE DISRUPTION; LOCAL EMISSIONS; MASS FLOW MODELLING; SURFACE WATER

Document Type: Research Article

Publication date: May 1, 2008

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more