Skip to main content
padlock icon - secure page this page is secure

Open Access Binding Energies of Hydrogen-Bonded cis-Amide and Nucleobase Dimers: An Evaluation of DFT Performance

Download Article:
(PDF 192.3 kb)
The understanding of biological processes at the molecular level demands accurate knowledge of the nonbonded interactions that control the geometries, binding energies and dynamics of the supramolecular structures involved. High level ab initio methods are still prohibitively expensive for large systems, but certain density functional (DFT) methods can provide cost-effective alternatives. The performance of six different functionals (BLYP, B3LYP, X3LYP, PBE, PW91, and mPW91) for the calculation of the doubly hydrogen-bonded cis-amide dimers (formamide)2 and (2-pyridone)2 have been tested. Their N-H···O hydrogen bond motifs occur between many nucleobases, peptides, and proteins. Binding energy benchmarks using ab initio MP2 calculations and basis set extrapolations to the complete basis set (CBS) limit with the Dunning aug-cc-pVXZ (X=D,T,Q) basis set series have been established. These yield D e = −14.80 kcal/mol for (formamide)2 and −22.63 kcal/mol for (2PY)2. Of the six functionals, PW91 consistently gives the best agreement with the MP2 basis-set limit binding energies, closely followed by PBE. The mPW91, B3LYP and the recently proposed X3LYP functionals are in less good agreement. The BLYP functional underestimates the interaction strengths by 20–25% and is not recommended. As an application the hydrogen-bond isomerization equilibria for the Sugar-edge, Watson-Crick and Wobble isomers of the dimers 2-pyridone·uracil and 2-pyridone·thymine from first principles are computed and compared to experiment.

47 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: July 1, 2005

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more