Skip to main content
padlock icon - secure page this page is secure

Open Access Experimental and Theoretical Investigation of Asymmetric Induction in the Synthesis of Disubstituted Cyclohexadienes via Chiral Benzene Chromium Complexes

Download Article:
(PDF 3,012.7 kb)
A series of [Cr(benzene)(CO)2L] complexes with L = PPh3, P(OMe)3, PPh2 ((−)-menthyl), P(OPh)2(O-(−)-menthyl), P(O-(−)-menthyl)3 were subjected to a nueleophile addition/acylation sequence to give trans-5,6-disubstituted cyelohexadienes. Low-to-moderate asymmetric induction was observed with the chira] ligands. Experimental and theoretical evidence for an alkylation at the metal center trans to the P ligand is presented, and a crystal structure determination of a [Cr(η 5–cyclohexadienyl)(P(OMe)3)(CO)2SnPh3] complex is included.

9 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: April 1, 1992

More about this publication?
  • International Journal for Chemistry and Official Membership Journal of the Swiss Chemical Society (SCS) and its Divisions

    CHIMIA, a scientific journal for chemistry in the broadest sense, is published 10 times a year and covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.

  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more