Skip to main content
padlock icon - secure page this page is secure

Electrodynamics in curved space-time: Free-space longitudinal wave propagation

Buy Article:

$22.00 + tax (Refund Policy)

Jiménez and Maroto [Phys. Rev. D 83, 023514 (2011)] predicted free-space, longitudinal electrodynamic waves in curved space-time, if the Lorenz condition is relaxed. A general-relativistic extension of Woodside’s electrodynamics [Am. J. Phys. 77, 438 (2009)] includes a dynamical, scalar field in both the potential- and electric/magnetic-field formulations without mixing the two. We formulate a longitudinal-wave theory, eliminating curvature polarization, magnetization density, and scalar field in favor of the electric/magnetic fields and the metric tensor. We obtain a wave equation for the longitudinal electric field for a spatially flat, expanding universe with a scale factor. This work is important, because: (i) the scalar- and longitudinal-fields do not cancel, as in classical quantum electrodynamics; and (ii) this new approach provides a first-principles path to an extended quantum theory that includes acceleration and gravity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Curved Space-Time;; Extended Electrodynamics;; Longitudinal Wave in Free-Space

Document Type: Research Article

Affiliations: 1: Aalborg University, Skjernvej 4, DK-9220 Aalborg Øst, Denmark 2: 4947 Ardley Drive, Colorado Springs, Colorado 80922, USA

Publication date: September 30, 2019

More about this publication?
  • Physics Essays has been established as an international journal dedicated to theoretical and experimental aspects of fundamental problems in Physics and, generally, to the advancement of basic knowledge of Physics. The Journal's mandate is to publish rigorous and methodological examinations of past, current, and advanced concepts, methods and results in physics research. Physics Essays dedicates itself to the publication of stimulating exploratory, and original papers in a variety of physics disciplines, such as spectroscopy, quantum mechanics, particle physics, electromagnetic theory, astrophysics, space physics, mathematical methods in physics, plasma physics, philosophical aspects of physics, chemical physics, and relativity.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more