
Foundational Experiences and Recent Advances in Long-Term Deep-Ocean Borehole Observatories for Hydrologic, Geodetic, and Seismic Monitoring
Abstract
For nearly three decades, various phases of the scientific Ocean Drilling Programs have deployed sealed-hole observatories in deep-ocean boreholes for long-term subseafloor monitoring to address a range of hydrologic and geodynamic objectives. We summarize the scientific motivation for these observatories and review some important early results from those installed in young oceanic crust and subduction zones. We also summarize the evolution of the borehole observatory designs and associated instrumentation, from simple single-interval installations with autonomous low-rate temperature and pressure monitoring to recent multiple-zone installations with sophisticated downhole instrument packages connected to seafloor cabled networks that provide power and high-rate, real-time data access. We emphasize recent advances, illustrated with example data drawn mainly from transects of borehole observatories offshore Japan and Cascadia. These examples illustrate the value of borehole observatory data in resolving a wide range of crustal geodynamic responses from long periods of gradual geodetic change and accumulation of stress to episodes of rapid deformation associated with both seafloor spreading and subduction processes.
For nearly three decades, various phases of the scientific Ocean Drilling Programs have deployed sealed-hole observatories in deep-ocean boreholes for long-term subseafloor monitoring to address a range of hydrologic and geodynamic objectives. We summarize the scientific motivation for these observatories and review some important early results from those installed in young oceanic crust and subduction zones. We also summarize the evolution of the borehole observatory designs and associated instrumentation, from simple single-interval installations with autonomous low-rate temperature and pressure monitoring to recent multiple-zone installations with sophisticated downhole instrument packages connected to seafloor cabled networks that provide power and high-rate, real-time data access. We emphasize recent advances, illustrated with example data drawn mainly from transects of borehole observatories offshore Japan and Cascadia. These examples illustrate the value of borehole observatory data in resolving a wide range of crustal geodynamic responses from long periods of gradual geodetic change and accumulation of stress to episodes of rapid deformation associated with both seafloor spreading and subduction processes.
Keywords: borehole observatories; long-term subseafloor monitoring; marine geodesy and geodynamics; marine seismology; ocean crustal hydrogeology and deformation
Document Type: Research Article
Publication date: September 1, 2018
- The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers on subjects of interest to the society: marine technology, ocean science, marine policy and education. The Journal is dedicated to publishing timely special issues on emerging ocean community concerns while also showcasing general interest and student-authored works.
- Submit a Paper
- Membership Information
- Information for Advertisers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content