Skip to main content
padlock icon - secure page this page is secure

Optimally Topologically Transitive Orbits in Discrete Dynamical Systems


The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Every orbit of a rigid rotation of a circle by a fixed irrational angle is dense. However, the apparent uniformity of the distribution of iterates after a finite number of iterations appears strikingly different for various choices of a rotation angle. Motivated by this observation, we introduce a scalar function on the orbits of a discrete dynamical system defined on a bounded metric space, called the linear limit density, which we interpret as a measure of an orbit's approach to density. Utilizing the three-distance theorem, we compute the exact value of the linear limit density of orbits of rigid rotations by irrational rotation angles with period-1 continued fraction expansions. We further show that any discrete dynamical system defined by an orientation-preserving diffeomorphism of the circle has an orbit with a larger linear limit density than any orbit of the rigid rotation by the golden number. Bernoulli shift maps acting on sequences over a finite alphabet provide another illustrative class of dynamical systems with dense orbits. Our study of the efficiency of an orbit's approach to density leads us to demonstrate the existence of a class of infinite sequences with finite linear limit density constructed by recursively extending finite de Bruijn sequences.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more