Skip to main content
padlock icon - secure page this page is secure

Free Content Diatom control of the autotrophic community and particle export in the eastern Bering Sea during the recent cold years (2008–2010)

Download Article:
(PDF 4,912.4 kb)
The southeastern Bering Sea has exhibited shifts in climate since the start of the 21st century. The regional climate shifts are manifested in the duration and areal extent of seasonal sea-ice coverage. During a recent cold period (2008–2010) with extensive spring sea-ice cover over the southeastern shelf of the Bering Sea, a total of 77 water column and 24 sediment trap profiles were collected over the shelf and shelf break and analyzed for autotrophic pigment concentrations and elemental (carbon, nitrogen, phosphorus, and silicon) concentrations in suspended and exported particulate material. These results are used to establish the seasonal succession of the autotrophic community and the control that both phytoplankton and zooplankton exert on export production. In spring (April to mid-June), total chlorophyll a (TChl a) concentrations were generally low (i.e., < 1 μg L–1); however, localized phytoplankton blooms near the marginal ice zone (MIZ) lead to elevated spring average TChl a concentrations (i.e., >5 μg L–1). In summer (mid-June to late July), photic zone chlorophyll a concentrations were typically <1 μg L–1 over the shelf and at the shelf break. Diatoms represented the greatest contribution to TChl a (regional averages of 71%–96% in spring and 25%–75% in summer) and autotrophic biomass in spring and summer. This algal class also represented 50%–99% of TChl a associated with particles sinking from the photic zone. The relatively high proportion of phaeophorbide a in sediment trap material indicates that sinking of zooplankton fecal pellets facilitate the export of particles through the water column. Further, zooplankton grazing may be an important process that returns regenerated nutrients to the water column based on the elemental composition of suspended and sinking particles. In colder than average years, the emergence of diatom blooms in the spring MIZ supports the production of abundant large zooplankton, which are a primary food source for juvenile pelagic fishes of economically important species. Therefore, processes in colder than average years may be essential for the transfer of particulate organic carbon from the surface waters and the success of the economically important pelagic fisheries.

52 References.

No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: November 1, 2014

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more