Skip to main content
padlock icon - secure page this page is secure

Free Content Group behavior among model bacteria influences particulate carbon remineralization depths

Download Article:
 Download
(PDF 1,528.5 kb)
 
Organic particles sinking from the sunlit surface are oases of food for heterotrophic bacteria living in the deep ocean. Particle-attached bacteria need to solubilize particles, so they produce exoenzymes that cleave bonds to make molecules small enough to be transported through bacterial cell walls. Releasing exoenzymes, which have an energetic cost, to the external environment is risky because there is no guarantee that products of exoenzyme activity, called hydrolysate, will diffuse to the particle-attached bacterium that produced the exoenzymes. Strategies used by particle-attached bacteria to counteract diffusive losses of exoenzymes and hydrolysate are investigated in a water column model. We find that production of exoenzymes by particle-attached bacteria is only energetically worthwhile at high bacterial abundances. Quorum sensing provides the means to determine local abundances, and thus the model results support lab and field studies which found that particle-attached bacteria have the ability to use quorum sensing. Additional model results are that particle-attached bacterial production is sensitive to diffusion of hydrolysate from the particle and is enhanced by as much as 15 times when diffusion of exoenzymes and hydrolysate from particles is reduced by barriers of biofilms and particle-attached bacteria. Bacterial colonization rates and activities on particles in both the euphotic and mesopelagic zones impact remineralization length scales. Shoaling or deepening of the remineralization depth has been shown to exert significant influence on the residence time and concentration of carbon in the atmosphere and ocean. By linking variability in remineralization depths to mechanisms governing bacterial colonization of particles and group coordination of exoenzyme production using a model, we quantitatively connect microscale bacteria-particle interactions to the carbon cycle and provide new insights for future observations.

61 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2014

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more