Skip to main content
padlock icon - secure page this page is secure

Free Content Mixing by microorganisms in stratified fluids

Download Article:
 Download
(PDF 1,741.4 kb)
 
We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and Péclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, η, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates η in terms of the ratio between the typical organism size, a, and an intrinsic length scale for the stratified flow, l = (νκ/N 2)1/4, where ν is the kinematic viscosity, κ the diffusivity, and N the buoyancy frequency. In particular, for small organisms in the relevant oceanic limit, a/l << 1, we predict the scaling η ∼ (a/l)3. The second estimate of η is formed by solving the full coupled flow-stratification problem by modeling the swimmer as a regularized force dipole, and computing the efficiency numerically. Our computational results, which are examined for all ratios a/ l, validate the scaling arguments in the limit a/ l << 1 and further predict η ≈ 1.2(a/l) 3 for vertical swimming and η ≈ 0.15 (a/l)3 for horizontal swimming. These results, relevant for any stratified fluid rich in biological activity, imply that the mixing efficiency of swimming microorganisms in the ocean is at very most 8% and is likely smaller by at least two orders of magnitude.

18 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2014

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea – Volume 17
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more