Skip to main content
padlock icon - secure page this page is secure

Free Content Dispersion and connectivity estimates along the U.S. west coast from a realistic numerical model

Download Article:
 Download
(PDF 8,978.8 kb)
 
Near-surface particle dispersion, larval dispersal and connectivity along the U.S west coast were explored using a realistic numerical model of the California Current System. Seasonal model velocities were qualitatively and quantitatively evaluated using Global Drifter Program data. The model displayed a clear seasonal cycle of eddy energy near the coast with energy maxima southwest of major headlands. Eddy speeds were correlated with drifter-based estimates during summer and fall when compared spatially. Over six million passive, Lagrangian particles were released in the upper 20 m of the water column within 10 km of the California and Oregon coasts and tracked for 7 years. The effect of subgridscale vertical turbulence was parameterized with a random walk model. Resulting trajectories yielded climatological maps of particle dispersion. Particle densities varied with release region, release season and time-since-release. Dispersal distances and coastal connectivity varied with season of release, release location, release depth and pelagic larval duration (PLD). Connectivity was clearly influenced by major geographic features such as the Gulf of the Farallones and Cape Mendocino. Given a moderate (30–60 day) PLD, mean dispersal distances varied from ∼10–230 km, with standard deviations of ∼130–220 km. For release locations from Palos Verdes to Point Sur, the primary direction of dispersal was northward for a moderate PLD, regardless of season. For long PLDs (120–180 day), mean dispersal distances were larger (∼40–440 km), with standard deviations of ∼330–540 km. In winter given a long PLD, dispersal was primarily southward for release locations north of Point Arena. Increasing release depths to 40–60 m altered mean dispersal distances by 50–250 km polewards, but had little effect on standard deviations. Point Conception did not act as a barrier to dispersal for source regions in the Southern California Bight.

51 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more