Skip to main content
padlock icon - secure page this page is secure

Free Content Deep cyclogenesis by synoptic eddies interacting with a seamount

Download Article:
(PDF 2,899.4 kb)
Strong deep eddies with cyclonic vorticity greater than 0.2 f0 were detected using an array of bottom current and pressure measurements in the Kuroshio Extension System Study (KESS) in 2004–2006. Daily maps showed these deep eddies developed locally. As in the Gulf Stream, meandering of the upper baroclinic jet generates deep cyclones and anticyclones by stretching and squashing the lower water column. However, unlike the Gulf Stream, the smaller vertical stretching and greater water depth in the Kuroshio Extension limits the relative vorticity generated by this vertical coupling process to about 0.1 f0. In the deep Kuroshio Extension the strong cases of vorticity generation and cyclone development are related to stretching driven when water columns are advected off isolated seamounts in the region. The large observed values of relative vorticity are consistent with a straightforward calculation of deep layer potential vorticity conservation.

A barotropic model is used to illustrate the topographic generation of cyclones by ambient currents in synoptic eddies. Positive potential vorticity filaments also develop during the cyclogenetic process with width LR = O(20 km), where LR is the topographic Rhines scale, and travel anticyclonically around the seamount. Observational evidence lends support to the existence of submesoscale filaments, insomuch as current meter records near the flanks of seamounts exhibited bursts of eddy kinetic energy when bandpass-filtered between the inertial period and eight days.

21 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2009

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more