Skip to main content
padlock icon - secure page this page is secure

Free Content Simulations of phytoplankton species and carbon production in the equatorial Pacific Ocean 1. Model configuration and ecosystem dynamics

Download Article:
 Download
(PDF 1,674.1 kb)
 
The primary objective of this research is to investigate phytoplankton community response to variations in physical forcing and biological processes in the Cold Tongue region of the equatorial Pacific Ocean at 0N, 140W. This research objective was addressed using a one-dimensional multicomponent lower trophic level ecosystem model that includes detailed algal physiology, such as spectrally-dependent photosynthetic processes and iron limitation on algal growth. The ecosystem model is forced by a one-year (1992) time series of spectrally-dependent light, temperature, and water column mixing obtained from a Tropical Atmosphere-Ocean (TAO) Array mooring. Autotrophic growth is represented by five algal groups, which have light and nutrient utilization characteristics of low-light adapted Prochlorococcus, high-light adapted Prochlorococcus, Synechococcus, autotrophic eukaryotes, and large diatoms. The simulated distributions and rates are validated using observations from the 1992 U. S. Joint Global Ocean Flux Study Equatorial Pacific cruises. The modeldata comparisons show that the simulations successfully reproduce the temporal distribution of each algal group and that multiple algal groups are needed to fully resolve the variations observed for phytoplankton communities in the equatorial Pacific. The 1992 simulations show seasonal variations in algal species composition superimposed on shorter time scale variations (e.g., 8–20 days) that arise from changes in the upwelling/downwelling environmental structure. The simulated time evolution of the algal groups shows that eukaryotes are the most abundant group, being responsible for half of the annual biomass and 69% of the annual primary production and organic carbon export.

124 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2007

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more