Skip to main content
padlock icon - secure page this page is secure

Free Content Critical effects of a tall seamount on a drifting vortex

Download Article:
(PDF 356.8 kb)
The initial-value problem for the evolution of an isolated vortex encountering a tall seamount during its westward beta-drift is studied within an equivalent-barotropic model, that is generalized to allow for the intersection of the layer interface with a sloping bottom. Given the Rossby radius and linear wave speed in the model, the parabolic shape of a seamount top and initial potential vorticity profile in the vortex core, the outcome is controlled by the vortex sign and a number of parameters: the seamount radius and height of penetration into the active layer, the radius and intensity of the vortex, the initial offset of the vortex center relative to the seamount, the Ekman layer depth over the seamount top, and the momentum lateral diffusion coefficient. Here we consider regimes for narrow seamounts where cyclonic vorticity generated in the water column swept off the top of the seamount plays a negligible role. The most significant effect on the vortex evolution is provided by a topographically induced anti-cyclonic circulation that is formed after squashing of water column replaced over the top of the seamount by the approaching vortex. The Geostrophic Vorticity intermediate model is used for numerical experiments. When the area of penetration is small and the topographic anticyclone is weak, the vortex drifts either predominantly westward north of the seamount or rotates around the seamount which is explained by presence of a separatrix in a simple kinematic model. For a larger area of penetration and stronger topographic anticyclone, violent interactions result in substantial deformations of the vortex core and loss of the material from the vortex periphery that leads to anomalous transport and diffusion. Vortex capture over the seamount is found in one range of parameters.

52 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2006

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more