Skip to main content
padlock icon - secure page this page is secure

Free Content Two coastal upwelling domains in the northern California Current system

Download Article:
(PDF 1,545.4 kb)
A pair of hydrographic sections, one north and one south of Cape Blanco at 42.9N, was sampled in five summers (1998–2000 and 2002–2003). The NH line at 44.6N lies about 130 km south of the Columbia River, and spans a relatively wide shelf off Newport, Oregon. The CR line at 41.9N off Crescent City, California, lies 300 km farther south and spans a narrower shelf. Summer winds are predominantly southward in both locations but the southward winds are stronger on the CR line. Sampling included CTD/rosette casts (to measure temperature, salinity, dissolved oxygen, nutrients, chlorophyll), zooplankton net tows and continuous operation of an Acoustic Doppler Current Profiler. We summarize and compare July-August observations from the two locations. We find significant summer-season differences in the coastal upwelling domains north and south of Cape Blanco. Compared to the domain off Newport, the domain off Crescent City has a more saline, cooler, denser and thicker surface mixed layer, a wider coastal zone inshore of the upwelling front and jet, higher nutrient concentrations in the photic zone and higher phytoplankton biomass. The southward coastal jet lies near the coast (about 20–30 km offshore, over the shelf) on the NH line, but far from shore (about 120 km) on the CR line; a weak secondary jet lies near the shelf-break (35 km from shore) off Crescent City. Phytoplankton tend to be light-limited on the CR line and nutrient-limited on the NH line. Copepod biomass is high (15 mg C m−3) inshore of the mid-shelf on both NH and CR lines, and is also high in the core of the coastal jet off Crescent City. The CR line shows evidence of deep chlorophyll pockets that have been subducted from the surface layer. We attribute these significant differences to stronger mean southward wind stress over the southern domain, to strong small-scale wind stress curl in the lee of Cape Blanco, and to the reduced influence of the Columbia River discharge in this region.

34 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 September 2005

More about this publication?
  • The Journal of Marine Research publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. In the area of biology, studies involving coupling between ecological and physical processes are preferred over those that report systematics. Authors benefit from thorough reviews of their manuscripts, where an attempt is made to maximize clarity. The time between submission and publication is kept to a minimum; there is no page charge.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more