Skip to main content
padlock icon - secure page this page is secure

Free Content Mixing in the surface waters of the western Bay of Bengal using 228Ra and 226Ra

Download Article:
228Ra and 226Ra have been measured in the surface waters of the western Bay of Bengal during five cruises conducted between 1988 and 1999. The ranges and mean (given in brackets) concentrations for 228Ra and 226Ra are 6.8-42.1 (17.8 ± 7.9) dpm/100 kg and 6.0-16.7 (9.2 ± 2.2) dpm/ 100 kg, respectively. (228Ra/226Ra) Activity Ratio (henceforth denoted as [228/226]) ranges from 0.8 to 3.4 with a mean of 1.9 ± 0.5. Both 228Ra and 226Ra show inverse correlation with salinity, the former much stronger.

A surface 2-D diffusion-advection model is used with a new approach. A simple bivariate function,

C(x,y) = C0e-Ax·e-By

where C0, A and B are constants, is fitted to the whole 228Ra and 226Ra data C(x,y). Substituting C(x,y) in the two-dimensional steady-state diffusion equation of Ra, the estimated values of the constants A and B can be related to eddy diffusivities and advection velocities in the zonal (x) and meridional (y) directions. From this relationship, the horizontal eddy diffusivities in the zonal and meridional directions are inferred to be 1.3 × 107 and 2.1 × 108 cm2s-1, respectively in the absence of advection terms. Similarly, neglecting the influence of diffusion, one can estimate the advection velocities, wx and wy in the zonal and meridional directions, as 0.2 and 1.1 cm s-1, respectively. The model-fit values C(x,y) of 228Ra concentrations are in good agreement with the measured values except in regions showing exceptionally high and low values. Incorporating both the advection rates and eddy diffusivities into the equation, it is found that increasing advection velocities depending on the direction can decrease or increase the eddy diffusivities and that such changes are more effective in the meridional direction compared to zonal direction in the region of study.

On the whole, 228Ra appears a good tracer to derive rates of mixing between low salinity waters in the north and their high salinity southern counterparts of the western Bay of Bengal. The eddy diffusivities, Kx and Ky (without advection) derived for the Bay of Bengal are higher by about an order of magnitude than the ones similarly obtained for the Arabian Sea. This is not unexpected due to the turbulent conditions prevailing in the Bay of Bengal for most of the year.

43 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2002

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more