Skip to main content
padlock icon - secure page this page is secure

Free Content On the development of thermohaline correlations as a result of nonlinear diffusive parameterizations

Download Article:
(PDF 1,939.5 kb)
Some oceanographic mixing parameterizations assume that transports depend nonlinearly on the buoyancy gradient; e.g., diffusivities are proportional to some power of the buoyancy gradient. In this paper we examine the consequences of these nonlinear-diffusion parameterizations by solving an initial value problem in which the t = 0 thermohaline fields are prepared as random and uncorrelated distributions of temperature and salinity. Solutions of the nonlinear diffusion equation as a ‘rundown’ problem show that correlations develop between the temperature and salinity. These correlations are such that the evolving thermohaline gradients tend to be strongly compensating in their joint effect on buoyancy.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1997

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more