Skip to main content
padlock icon - secure page this page is secure

Free Content Time-dependent motions and the nonlinear bottom Ekman layer

Download Article:
(PDF 815.2 kb)
The laminar bottom Ekman layer beneath a flow with finite relative vorticity is studied. First, the case with only a steady interior shear flow is reviewed, and then a case with a spatially uniform oscillating flow is superimposed. In both cases, the problem can be reduced to solving ordinary differential equations. The competition of two effects governs the results. The interior vorticity effectively modifies the rotation rate, but advection (especially vertically, due to Ekman pumping) tends to counteract the vorticity modification. Vertical advection keeps the time-dependent boundary layer well behaved for negative interior vorticities, but a boundary layer singularity can still exist at a single superinertial frequency when interior relative vorticity is positive.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 1997

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more