Skip to main content
padlock icon - secure page this page is secure

Free Content Size-fractionated 234Th in continental shelf waters off New England: Implications for the role of colloids in oceanic trace metal scavenging

Download Article:
(PDF 3,056.2 kb)
Measurements of 234Th (t1/2 = 24.1 days) in dissolved, colloidal, and particulate forms have been made to investigate the role of colloids in reactive metal scavenging in the surface waters of Buzzards Bay, over an annual cycle, and in the shelf and slope waters off New England. At-sea sampling involved prefiltering seawater through 0.2 μm filters followed by cross-flow filtration using a 10,000 nominal molecular weight filter to collect colloidal (10,000 NMW-0.2 μm) and dissolved (<10,000 NMW) phases. Total 234Th activities increase with distance from shore, indicative of enhanced scavenging in the particle-rich nearshore waters. Clearly seen in Buzzards Bay are seasonal changes in total 234Th, with activities ranging from ≈0.7 dpm I−1 in the winter, preceeding a phytoplankton bloom, to ≈0.2 dpm I−1 in the summer. Throughout the annual cycle, 2–16% of total 234Th is colloidal, 22–40% is dissolved, and 45–75% is particulate. In the offshore waters, ≈1% of total 234Th is colloidal, 2–6% is particulate, and 93–98% is dissolved. The 234Th size-distribution exhibits a systematic increase in the association of 234Th with particulate and, to a lesser extent, colloidal matter with increasing suspended particle concentration (Cp). Moreover, a first-order prediction of the fractionation of 234Th between the various size classes is demonstrated using measured solid-solution partition coefficients. Box model calculations indicate a mean residence time of colloidal 234Th with respect to aggregation into particles of 0.3 days in Buzzards Bay, which compares with 2 days for dissolved and 4 days for particulate 234Th. In the offshore surface waters, colloidal and particulate 234Th residence times are ≈0.5 days and 2–3 days respectively, compared with 30–85 days for the dissolved phase. The short and relatively invariant residence time of colloidal 234Th suggests that colloidal aggregation may not be rate-limiting in controlling the scavenging of thorium and, by analogy, other particle-reactive trace metals. An implication of these results is that colloidal 234Th may be tracing a reactive intermediate in the bacterially mediated decomposition of large, rapidly-sinking biogenic aggregates. Using the size-fractionated 234Th data, we demonstrate that Kd values for thorium are invariant with Cp and that scavenging rate constants exhibit a first-order dependence on Cp. Thus, “particle-concentration effects” are negligible for oceanic waters (Cp ≈0.01–1 mg I−1).
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1993

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more