Skip to main content
padlock icon - secure page this page is secure

Free Content Steady wind forcing of a density front over a circular bank

Download Article:
(PDF 1,383.3 kb)
The response of a density front along the edge of a circular bank to steady wind forcing is examined using a primitive equation numerical model. Initially, the fluid is at rest with relatively light, vertically homogeneous water over the bank. The density field is allowed to adjust geostrophically and frictionally for ten days, after which a spatially uniform wind stress is applied for three days. The resulting surface velocity field over the bank is asymmetrical, with a relative maximum on the downwind side of the bank to the left of the wind direction and a relative minimum on the upwind side of the bank to the right of the wind direction. For the small Ekman number considered here, the density-driven flow persists beneath the surface Ekman layer. Light fluid is advected off the bank near the surface in the direction of Ekman transport, weakening the surface density gradients. On the opposite side of the bank, the vertical structure of the density field is weakened and the surface density gradients remain relatively constant. When the wind stress is abruptly turned off, the anti-cyclonic surface velocity is restored within one inertial period, and some light fluid remains off the bank. The loss of neutrally buoyant near-surface particles released over the bank primarily occurs from the region of the bank downwind and to the right. The presence of the density front slightly increases the number of particles lost from the bank. A simple formula for the particle loss is presented.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 1993

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more