Skip to main content
padlock icon - secure page this page is secure

Free Content The North Atlantic circulation: Combining simplified dynamics with hydrographic data

Download Article:
 Download
(PDF 3,628.3 kb)
 
We estimate the time-averaged velocity field in the North Atlantic from observations of density, wind stress and bottom topography. The flow is assumed geostrophic, with prescribed Ekman pumping at the surface, and no normal component at the bottom. These data and dynamics determine velocity to within an arbitrary function of (Coriolis parameter)/(ocean depth), which we call the “dynamical free mode.” The free mode is selected to minimize mixing of potential density at mid-depth. This tracer-conservation criterion serves as a relatively weak constraint on the calculation.

Estimates of vertical velocity are particularly sensitive to variations in the free mode and to errors in density. In contrast, horizontal velocities are relatively robust. Below the thermocline, we predict a strong O (1 cm/sec) westward flow across the entire North Atlantic, in a narrow range of latitude between 25N and 32N. This feature supports the qualitative (and controversial) conjecture by Wüst (1935) of flow along the “Mediterranean Salt Tongue.” Along continental margins and at the Mid-Atlantic Ridge, predicted bottom velocity points along isobaths, with shallow water to the right. These flows agree with many long-term current measurements and with notions of the circulation based on tracer distributions.

The results conflict with previous oceanographic-inverse models, which predict mid-depth flows an order of magnitude smaller and often in opposite directions. These discrepancies may be attributable to our relatively strong enforcement of the bottom boundary condition. This involves the plausible, although tenuous, assertion that the flow “feels” only the large-scale features of the bottom topography. Our objective is to investigate the consequences of using this hypothesis to estimate the North Atlantic circulation.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 1993

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more