Skip to main content
padlock icon - secure page this page is secure

Free Content Surface-intensified Rossby waves over rough topography

Download Article:
(PDF 685.1 kb)
Observations and numerical experiments that suggest that sea-floor roughness can enhance the ratio of thermocline to abyssal eddy kinetic energy, motivate the study of linear free wave modes in a two layer quasi-geostrophic model for several eases of idealized variable bottom topography. The foeus is on topography with horizontal seale comparable to that of the waves, that is, on "rough" small-amplitude topography. Surface-intensified modes are found to exist at frequencies greater than the flat-bottom baroclinic cut-off frequency. These modes exist for topography that varies in both one and two horizontal dimensions. An approximate bound indicates that the maximum frequency of the surface-intensified modes is greater than the baroclinic cut-off by a factor equal to the total fluid depth divided by the lower layer depth. For fixed topographic wavenumber, there is not a simple dependence of the degree of surface-intensification on topographic amplitude, but rather a resonant structure with peaks at certain topographic amplitudes. These modes may be resonantly excited by surface forcing.

9 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 1992

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more