Skip to main content
padlock icon - secure page this page is secure

Free Content The accumulation of barium by marine phytoplankton grown in culture

Download Article:
(PDF 1,312.8 kb)
Marine phytoplankton have been implicated as potentially important vectors for the vertical transport of barium in the oceans. To better assess the extent to which phytoplankton can influence the geochemical cycling of barium, its bioconcentration was studied in 21 clones of 19 species of marine phytoplankters belonging to 9 algal classes. Barium levels in the ash ranged from less than 2 g g–1 for the coccolithophore Emiliania huxleyi and the red alga Porphyridium cruenturn to 589 g g–1 for the flagellate Tetraselmis levis. Concentrations ≥4000 g g–1, previously reported for certain samples of diatom ash were not encountered in this study. Concentration factors on a volume basis (VCF) ranged from 0 to 3.2 × 104; the geometric mean VCF for all species was 225. Diatoms and coccolithophores generally had lower VCFs (geometric means of 90 and 12, respectively) than did other species; dinoflagellates had a geometric mean VCF of 490. Experiments with the diatom Thalassiosira pseudonana indicated that Ba cell–1 increased linearly with ambient Ba concentration. Experiments to localize the site of Ba deposition in diatom cells indicated that most of the Ba was associated with the frustules rather than with the organic fraction.

Dinoflagellates and several other algae not only concentrated Ba to relatively high levels, but also accumulated Si when grown in Si-enriched medium, although they grew at least as well without added Si as with it. Ba and Si accumulation were generally negatively correlated.

15 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 1991

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more