Skip to main content
padlock icon - secure page this page is secure

Free Content Maximal quantum yield of photosynthesis in the northwestern Sargasso Sea

Download Article:
 Download
(PDF 944.1 kb)
 
The magnitude and variability of the maximal quantum yield of photosynthesis were examined in the northwestern Sargasso Sea in April 1985. Maximal quantum yield was calculated from light-limited photosynthetic rates and spectrally-weighted absorption coefficients. The absorption by total particulates collected on a glass fiber filter was partitioned into two components, one associated with living phytoplankton and one associated with other absorbing particles. Two types of maximal quantum yield were calculated: one from the absorption by total particulates and one from the absorption by the phytoplanktonic component alone. Maximal quantum yield calculated from absorption by total particulates was low [0.014 to 0.071 mol C (mol photons)–1] and decreased as the proportion of absorption due to the non phytoplanktonic particles increased. The phytoplanktonic maximal quantum yield was higher [0.033 to 0.102 mol C (mol photons)–1] and varied by a factor of two over a period of two weeks during and following a spring bloom. Use of the phytoplanktonic component of absorption to calculate maximal quantum yield allowed analysis of changes in maximal quantum yield as a function of changes in phytoplankton physiology rather than changes in the amount of absorption by particulate detritus. The pattern of variation in quantum yield was related to nitrogen flux; these data suggest that maximal quantum yield can be predicted from environmental conditions on a regional or seasonal basis.

28 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1989

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more