Skip to main content
padlock icon - secure page this page is secure

Free Content Spectral transform simulations of finite amplitude double-diffusive instabilities in two dimensions

Download Article:
(PDF 2,156.5 kb)
Simulations of double-diffusion with a two-dimensional, vertical plane spectral transform model reveal details of finite amplitude behavior in salt finger, interleaving and diffusive instabilities. Within the range of fluid parameters studied (3 < < 10, .1 < r < .5), infinite, fastest-growing fingers are unstable to Holyer's (1984) nonoscillatory instability and are completely disrupted by it. Finite fingers localized on density steps are also disrupted. Initialized density steps are eroded (the gradients reduced). Fluxes and other diagnostic quantities were determined for salt finger fields at statistical stationarity. These fields contain transitory, irregular finger structures. Fluxes decline steeply as Rfp increases. A single point of comparison of buoyancy flux with ocean measurement yielded good agreement. The dependence of flux ratio on the stability parameter is similar to the linear theory prediction for fastest-growing, infinite fingers and does not increase as Rfp approaches 1, in contrast to laboratory measurements. Holyer's (1984) Floquet theory is extended to the case of nonzero, density compensating, horizontal gradients, and, together with the simulation results, encourages the interpretation of the interleaving instability as being sloping salt fingers. A few preliminary simulations of the diffusive regime indicate very complex behavior. A growing oscillatory perturbation can lead to subcritical convective instability. Such motions sharpen initialized density steps. In the presence of a step, unstable motions are supported even when the fluid is linearly stable to both convection and the diffusive mode.

21 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 1989

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more