Skip to main content
padlock icon - secure page this page is secure

Free Content A nonlinear, time-dependent thermocline theory

Download Article:
 Download
(PDF 5,479.4 kb)
 
A noneddy resolving, time-dependent, nonlinear theory of the large-scale ocean circulation is presented. The variability in this theory occurs as a response to variability in forcing. Baroclinic and barotropic evolution is computed using a two-layer, quasigeostrophic, wind-driven model. Both analytical and numerical solutions are obtained.

Attention is focussed on the low-frequency, basin scale fluctuations of the wind. Based on these restrictions, the various modes of response are separated by means of a multiple time scale analysis. The barotropic response is found to be effectively instantaneous, and a relatively simple advection equation is shown to govern the baroclinic response. Analytical solutions of the baroclinic equation are obtained under the assumption that the time scales of the wind variability are short compared to the cross-basin baroclinic wave propagation time. Numerical solutions are obtained in more general cases.

The baroclinic large-scale response is fundamentally nonlinear in that baroclinic waves propagate in the presence of the Sverdrup flow, which is itself time dependent. This nonlinearity results in at least two effects. First, the characteristics of wave propagation are significantly altered from pure zonality. This leads to the formation of homogenized zones, within which directly forced thermocline variability vanishes. Second, thermocline fluctuations are produced which have variance at frequencies other than those of the forcing. Consequently, forcing the model with an annually varying wind stress yields contributions to the thermocline spectrum at one year and all its superharmonics (i.e., 6 months, 4 months, 3 months, etc.). The amplitude of the superharmonics increases with distance from the eastern boundary. Mean baroclinic circulation on the scale of the thermocline waves is also found. The above features are predicted by analytical theory and confirmed by numerical experimentation.

Observations of the geographical distribution of thermocline variability in the North Pacific and North Atlantic Oceans and of first mode variance at "inadmissible" planetary wave frequencies are discussed in light of the theory.

18 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 1989

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more