Skip to main content
padlock icon - secure page this page is secure

Free Content Seasonal fluxes of silicoflagellates and Actiniscus in the subarctic Pacific during 1982–1984

Download Article:
(PDF 2,720.9 kb)
A seasonal flux study of silicoflagellates and Actiniscus was conducted at subarctic Pacific Station PAPA (50N, 145W; water depth 4200 m) during September, 1982 through August, 1984 using PARFLUX high resolution time series sediment traps deployed at 1000 m and 3800 m depths. The time series sediment trap samples were collected for 4 to 16-day periods depending on the samples; most of the samples were collected for 14 to 16-day periods. From a depth of 3800 m, a total of 47 samples represents a nearly two-year continuous record of the fluxes of silicoflagellate and Actiniscus taxa. An additional 12 samples from 1000 m represent a 6-month period, providing synchronized time series samples with the deeper depth which is essential to understand particle sinking processes.

Seven silicoflagellate taxa, several variants of silicoflagellates, and Actiniscus pentasterias (Ehrenberg) group were examined. A total of more than 32 × 103 specimens were identified to species level and counted in this study. Distephanus speculum (Ehrenberg) and Dictyocha mandrai Ling are the dominant taxa, generally contributing >75% of the flux assemblages. Considerable intra-annual and interannual flux variability was observed with the range of total silicoflagellate flux varying from 5 × 103 to 700 × 103 skeletons m−2day−1 during the two years. Seasonal flux patterns of D. speculum and its closely related taxa are internally consistent and they conform with the productivity signals shown by diatom, total mass, or opal fluxes. The seasonal flux pattern of D. mandrai exhibits its own unique late fall/early winter signals with most of the cumulative flux concentrated during this season in year 1.

The sinking mechanism of silicoflagellates is large aggregates which sink faster than discrete specimens. Silicoflagellates generally sink faster than marine snow mediated diatom assemblages. The larger influence of fecal material may be responsible for the observed faster sinking speeds than those of diatoms. No significant dissolution of silicoflagellate assemblages occurs in the water column due to innate protection and to accelerated sinking. Most of the silicoflagellates supplied to the sea floor are subsequently dissolved, and only 1% of the total supply is preserved in the surface sediments, with considerably altered assemblages.

9 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 1987

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more