Skip to main content
padlock icon - secure page this page is secure

Free Content Grazer control of the fine-scale distribution of phytoplankton in warm-core Gulf Stream rings

Download Article:
(PDF 930.7 kb)
We measured in situ rates of primary production, zooplankton grazing and the fine-scale distribution of zooplankton abundance, along with continuous observations of salinity, temperature and fluorescence in vertical profiles of two warm-core Gulf Stream rings and a station in the northern Sargasso Sea. A subsurface chlorophyll maximum was located within the pycnocline at all nineteen of the pump stations. In the majority of pump profiles, subsurface chlorophyll maxima coincided with maxima in particulate organic carbon and ATP. However, neither zooplankton biomass or numerical abundance were related to chlorophyll concentrations. Maxima in zooplankton biomass and grazing generally occurred at depths of highest primary production. Zooplankton grazing and biomass were more closely coupled to phytoplankton production per unit chlorophyll (P-chl) rather than production per unit volume (absolute production). Our results suggest that after the seasonal thermocline is established, phytoplankton removal by zooplankton is greatest in the upper water column where P-chl is higher. This phytoplankton removal by zooplankton limits the amount of absolute primary production in the upper water column and results in a subsurface maximum of absolute production at depths where grazing pressure is reduced. In contrast, the subsurface chlorophyll maximum, likely formed from both production at depth and sinking, does not appear to be a site of enhanced zooplankton grazing activity.

42 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 1986

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more