Skip to main content
padlock icon - secure page this page is secure

Free Content Dissipation and diffusion by internal wave breaking

Download Article:
 Download
(PDF 700.9 kb)
 
Recent direct observations of the rate of kinetic energy dissipation, , tend to vary systematically with buoyancy frequency, N. This note presents arguments leading to an expected relationship between these two parameters. We first suggest that the classical separation of velocity field into “turbulent” and “mean” (including internal waves) is inappropriate for a stratified system such as the ocean, in which nonlinear forces and buoyant restoring forces act over a wide range of space-time scales. Reconsidering the steady-state kinetic energy equation without this separation, we obtain  ∝ N1.0 or  ∝ N1.5, where the ambiguity in exponent is associated with uncertainty with regard to the appropriate form for the vertical velocity variance of the internal wave field. With similar assumptions in the steady-state equation for available potential energy (APE) it is shown that the rate of dissipation of APE, , also varies as  ∝ N1.0 or  ∝ N1.5, where ambiguity in exponent again derives from internal wave vertical velocity variance. If, in addition, the flux Richardson number is independent of N, the vertical eddy diffusivity for mass Kp associated with internal wave mixing varies as KpN–1.0 or KpN–0.5.

17 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: February 1, 1984

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more