Skip to main content
padlock icon - secure page this page is secure

Free Content On the migration of isolated eddies with application to Gulf Stream rings

Download Article:
(PDF 1,212.5 kb)
An analytical model describing the -induced drift of isolated nonlinear eddies such as the cold- and warm-core rings observed in the Atlantic Ocean is proposed. The ocean is approximated by two layers and attention is focused on frictionless upper ocean eddies whose surface area is finite. These isolated eddies are nonlinear in the sense that (a) the corresponding Rossby number is relatively large and (b) the interface vertical displacements ("amplitudes") are comparable to the upper layer undisturbed depth. Solutions for steadily translating eddies which carry their entire mass as they move are sought. Examination of the problem in a moving coordinate system enables one to construct such solutions analytically by using the equations of motion in an integrated form and a power series expansion.

Significant differences between the behavior of cyclonic and anticyclonic eddies are found. Although both cyclonic and anticyclonic eddies drift to the west due to , their speeds and dynamical behavior are very different. For some range of parameters the -induced drift of an anticyclonic eddy differs by as much as 400% from the drift of a cyclonic eddy with similar characteristics. Furthermore, the -induced translation of cyclonic eddies increases with size and decreases with "amplitude" whereas the speed of anticyclonic eddies decreases with size and increases with increasing amplitude. In addition, the translation of anticyclonic eddies is larger than the long wave speed (based on the undisturbed depth) whereas the translation of cyclonic eddies is smaller than the long wave speed. Since such a dynamical behavior is not revealed by quasi-geostrophic theory (which does not distinguish between cyclonic and anticyclonic eddies) it is suggested that nonlinearity plays an important role in the dynamics of some isolated rings.

Application of the theory to the Gulf Stream rings suggests that the self-propelled movement due to is ≈2 cm sec−1 for cold-core rings and ≈1 cm sec−1 for warm-core rings. Each ring may carry as much as 8–10,000 km3 of upper ocean water as it moves.

16 References.

No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 1983

More about this publication?
  • The Journal of Marine Research, one of the oldest journals in American marine science, publishes peer-reviewed research articles covering a broad array of topics in physical, biological and chemical oceanography. Articles that deal with processes, as well as those that report significant observations, are welcome. Biological studies involving coupling between ecological and physical processes are preferred over those that report systematics. The editors strive always to serve authors and readers in the academic oceanographic community by publishing papers vital to the marine research in the long and rich tradition of the Sears Foundation for Marine Research. We welcome you to the Journal of Marine Research.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Purchase The Sea
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more