Targeting the third ‘90’: introducing the viral load champion

Objectives: To move closer to achieving the third target of the UNAIDS 90-90-90 goals, we prospectively implemented a viral load (VL) champion (VLC) program aimed at enhancing VL monitoring and recognition of treatment failure.

Design: Three clinics in eThekwini, Kwa-Zulu Natal (low-, medium- and high-volume, encompassing 9184 patients overall) were each assigned a VLC. We employed a descriptive analysis (chart audit) to compare the pre-intervention period to a 1-year post-intervention period. The number of patients with a VL test performed 6 and 12 months after the intervention was calculated as a proportion of VL tests due at those time points (VL completion rate).

Results: The pre-implementation VL completion rate at the three sites was respectively 68% (140/205 patients), 54% (84/155 patients) and 64% (323/504 patients), and the 6-month post-implementation completion rate increased to 83% (995/1194 patients), 90% (793/878 patients) and 99% (301/3124 patients) ($P < 0.0001$ for each site). VL completion rates remained significantly higher at 12 months post-implementation, with an average cumulative VL completion rate of >90% across all facilities.

Conclusion: We demonstrate a successful, multifaceted, quality-improvement intervention centered on a clinic-level VLC which, taken to scale, has important implications for attaining the third UNAIDS 90-90-90 target.

Study population, design and methods

Program setting

In 2017, 621411 persons living with HIV (PLHIV) were registered in eThekwini, of whom 390784 (62%) were receiving ART at 124 clinical sites. Between November 2016 and November 2017, we conducted a cross-sectional comparative analysis using primary data at three pilot government ART clinics. A total of 9184 active PLHIV were enrolled in the clinics, had been receiving ART since 2006 for varying periods of time and were due for VL testing. Site 1 was a mid-volume clinic with 40 ART initiations monthly and 1628 active ART patients at baseline; Site 2 was a low-volume clinic with 20 ART initiations monthly and 961 active ART patients at baseline; and Site 3 was a high-volume clinic with 75 ART initiations monthly and 6595 active ART patients at baseline.

In South Africa, the National Health Laboratory Services (NHLS) perform VL testing using plasma and 26% of adult patients underwent VL testing 6 months, 1 year and 2 years after ART initiation.

Improvement of VL testing coverage rates by addressing bottlenecks in the cascade has been the subject of multiple studies. A public ART clinic in Limpopo, South Africa, successfully used a quality improvement framework using a sticker-based system that flagged the month when a repeat VL blood draw was required. A multicountry Médecins Sans Frontières project evaluated key implementation strategies within the VL cascade aimed at making VL monitoring routine. One recommendation from this project was to implement a VLC focal person specifically assigned to respond to high VL results. We implemented a VL champion (VLC) model aimed to enhance VL monitoring, and assessed pre- vs. post-intervention whether VL testing rates had improved in three publicly operated clinics in eThekwini, Kwa-Zulu Natal. A system of clinical care champions introduced to improve quality and adherence to clinical protocols in chronic medical conditions, such as diabetes, has previously been extended to the management of HIV infection, although not for this specific purpose. We hypothesized that a VLC, typically a nurse from the facility trained in quality improvement, would enhance suboptimal VL monitoring through 1) identification of those in need of routine and repeat VL monitoring, and 2) triaging patients for appropriate management such as adherence counselling or switching to second-line ARVs.

Human immunodeficiency virus (HIV) viral load (VL) suppression prevents disease progression, reduces transmission and minimizes the acquisition of resistance to antiretrovirals (ARVs). Optimized implementation of VL monitoring, especially in disease-endemic, resource-limited settings, is key to achieving the Joint United Nations Programme on HIV and AIDS (UNAIDS) 90-90-90 targets, whereby by 2020, 90% of people living with HIV will know their status, 90% of those diagnosed will be receiving sustained antiretroviral treatment (ART), and 90% of those receiving ART will achieve VL suppression.

Among the estimated 7200000 people living with HIV in South Africa in 2017, 61% were receiving ART and only 47% were virologically suppressed. Laboratory-based VL monitoring remains vastly underutilized in South Africa, despite being widely accessible. In the KwaZulu-Natal eThekwini health district, an audit of files of ART patients from 11 clinics in 2016 demonstrated that respectively only 42%, 32% and 90% were receiving ART at baseline; and only 42%, 32% and 90% of those receiving ART at baseline were virologically suppressed.
blood samples, and compile weekly reports of elevated VL results that are accessible to clinicians via an online dashboard. However, manual entry is required for reconciliation, as the dashboard does not interface directly with the clinic electronic medical record, the Three-Tier Interlinked Electronic Register (TIER.net). National public health surveillance on VL completion rates is monitored through TIER.net, and there are significant inaccuracies resulting from incomplete data entry, inadequate monthly clinical documentation and delayed uploading due to staff shortages and equipment failure.

The viral load champion: improving routine viral load monitoring

A VL strategic operational plan (SOP) was developed and implemented in the study clinics (Figure 1). A VLC at each clinic was assigned to optimize VL monitoring through oversight of the VL SOP in each study clinic. The VLC supervised two work streams: 1) a baseline pre-intervention catch-up phase of VL data clean-up and triangulation, where laboratory results were entered into clinical charts and the clinic’s ART program database, and 2) ongoing coordination and management of the multifaceted VL SOP to ensure routine VL monitoring, accurate reporting, and expeditious follow-up on test results (Table 1).

For the VLCs, we sought registered nurses who had completed government certification through the Nurse Initiated Management of ART (NIMART) curriculum and were permanent clinic staff members. The nurses were chosen from within the clinic after expressing an interest in the position. The role of VLC (Table 1) was expected to replace 10 of the current 40 h weekly clinical duties. The VLC required staff support and the ability to maintain accurate paper-based and electronic records. The VLC coordinated VL monitoring and management work streams through daily interaction with the clinic doctor, pharmacist, data capturers and lay counsellors, each of whom had specific job descriptions (Table 2).

Implementation phase

The initial pilot implementation period focused on complete audits of clinic charts, using a baseline audit tool (Appendix Figure A.1), staff orientation, and VL cascade education. Weekly quality improvement meetings were held during the implementation periods. On baseline ART chart audits, clinical files of patients who

FIGURE 1 High VL standard operating procedure. *See Appendix for sample and/or links to the tools used. VL = viral load (copies/ml); EAC = enhanced adherence counseling; FL ART = first-line ART; ART = antiretroviral therapy; m = month; SL ART = second-line ART; VLC = VL Champion; LTFU = lost to follow-up; NHLS = National Health Laboratory Services; DOH = Department of Health; QA = quality assurance.
were active and suppressed on ART, had a recent unsuppressed VL, were lost to follow-up (LTFU), or had no record of VL testing were identified and separated into different work streams (Figure 1). VL data were entered into clinical charts and updated in TIER.net. Lay counsellors contacted the patients and scheduled repeat appointments for those who were LTFU or required a repeat VL test. This cycle was repeated monthly, and was accompanied by close inspection of monthly data management performance, including assessment of the rate of blood sample rejection, delayed result access, inclusion of VL results in clinical charts, and clinical management of unsuppressed VL in accordance with South African national guidelines. In addition, qualitative feedback sessions, led by the VLC, were included during the quality improvement meetings to address work flow outcomes and the roles of the team members.

All patients received nurse-directed education at every clinic visit, with an emphasis on the importance of VL monitoring and maintaining optimal ART adherence, and a VL ‘anniversary’ was established for each patient. Patients were incentivized by the possibility of less frequent clinic visits (6-month instead of 3-month refills) if VL was suppressed at the time of consultation.

Monitoring outcomes

The purpose of the VL monitoring SOP was to enhance VL data management. All samples collected were recorded in a VL sample register (Appendix Figure A.2), which was used to ensure that VL results were obtained from the laboratory, and that these results were recorded and/or placed in clinical charts daily. Rejected samples were flagged, and patients were contacted by lay counsellors for repeat blood draws.

Clinical managers and senior nurses were trained to generate weekly high VL reports from the laboratory intranet and identify patients who required tracking and follow-up clinical management. This list was merged with the high VL register (Appendix Figure A.3) and the list of missed appointments to be managed by the lay counsellors, who then contacted the patients. Patients with an undetectable VL were triaged for less frequent dispensing with repeat prescriptions.

Study data management and analysis

The following routine clinical data were accessed from TIER.net: total patients remaining on ART, VL test date, VL result, CD4 cell count, ARV regimen, patient visit date, and VL due. The District Health Information System was used to validate the total number of patients remaining on ART, and sample clinical charts were audited for VL result and VL test date. The pre-implementation period, which encompassed initial chart auditing, assigning clinic roles, and roll-out of the SOP, averaged 2 months for each clinic. From November 2016 to November 2017, during the post-implementation period, a descriptive analysis of 6- and 12-month VL follow-up tests results, defined as any VL test conducted within a 60-day window of the ex-
Outcomes following the VLC intervention were assessed by cohort analysis at 6 and 12 months (Figure 2). The pre-implementation VL completion rate at the pilot sites was 68% (140/205 patients), 54% (84/155 patients) and 64% (323/504 patients) at Sites 1, 2, and 3, respectively. Six months after implementation, the VL completion rate had increased to 83% (995/1194 patients), 90% (793/878 patients) and 99% (3101/3124 patients), respectively. This improvement was maintained at 12 months, with an average cumulative VL completion rate of >90% across all facilities and improved accuracy of VL suppression rates (Cochran-Armitage trend test for VL tests performed per site at Site One: $P < 0.0001$; Site Two: $P < 0.0001$, Site Three: $P < 0.0001$; cumulative: $P < 0.0001$). No significant trend of improvement was reported for VL suppression rates at baseline, 6 and 12 months all of which remained at >80%.

During the team feedback sessions, it was concluded that successful application of the extensive job requirements required to implement VL monitoring required a VLC who could dedicate 10 hours per week to the role.
We implemented a quality improvement project based on prevailing South African national guidelines at three pilot sites, directed by an assigned clinical champion—the VLC—that emphasized VL monitoring focused on timely requests, well-documented results, and reliable follow-up. Cascades of care have become an established mechanism to illustrate the effectiveness of coverage of care in HIV programs. The third pillar of viral suppression within the cascade reflects the cumulative effectiveness of HIV treatment programs at an individual and public health level for the prevention of viral transmission and an increase in acquired immunodeficiency syndrome (AIDS) free survival.

Our study shows the impact of strengthening targeted health systems to ensure appropriate levels of coverage of services to enhance program effectiveness. The VL completion rate improved to >80% within 6 months, and to a combined average of >90% over 12 months. This multifaceted clinic-centered intervention is replicable in both low- and high-volume ART clinics, which, if taken to scale, has important implications for achieving the UNAIDS third 90 target.

Our results also demonstrate the importance of improved VL monitoring in accurately reporting viral suppression to achieve the UNAIDS goals for epidemic control. Before the implementation of the project, the overall average virological suppression rate of the pilot sites was reported to be 91%, but was based on a VL completion rate of <50%. This result could easily be misinterpreted as a valid result for the third ‘90’ of the HIV cascade (90% of those receiving ART will achieve VL suppression). In addition to the negative effects at the individual and public health levels, without accurate reporting, local and global efforts at evaluating the implementation project are handicapped, and further, it may dissuade decisions to fund the third ‘90’ of the HIV care cascade.

Limitations of our multifaceted quality improvement project include delineating the effects of individual components, specifically, an inability to directly attribute the improvement of VL completion rates to the VLC. However, the outcomes demonstrate that the bundled approach for VL monitoring was potentially effective in South Africa’s clinic model in facilities with both low and high patient volumes. An additional limitation of our data is the lack of external validity. In this setting of three pilot sites that received outside support and attention, it can be expected that a clinical research setting may outperform a real world clinical setting. However, the key factor in the initial root cause analysis of the poor VL monitoring was the lack of ownership of the problems of missed VL monitoring and treatment failure. Our data demonstrate that the addition of a dedicated, experienced person to this role is a necessary aspect of the multifaceted quality improvement project.

This initiative suggests that substantial improvements in VL completion rates can be achieved quickly in programmatic settings. Implemented more widely, the intervention has the potential to substantially improve both individual ART outcomes and, through identification of viremic patients, have downstream impact on reduced transmission, possibly preventing disease progression, and reducing the emergence of ARV resistance in the community.

References

APPENDIX

Adherence worksheet/EAC worksheet
A combined tool for clinical follow-up visits and enhanced adherence counselling for clients identified as Risk of Treatment Failure Client for the VL priority clinic. This worksheet was adapted from the Médecins Sans Frontières (MSF) Risk of Treatment Failure programme. Both the adherence worksheet and the adherence initiation checklist were attached to all patients’ clinical chart on initiation. Reference 1 will link to an example of the original MSF tool. The project-modified tool is available on request from the authors and, in future, the KZN Department of Health.

Adherence Initiation Checklist
This tool was placed on all patient charts at initiation of ART. The tool was adapted from sections 4, 5 and 7 of the KZN Department of Health Clinical Chart (or HAST [HIV/AIDS, STIs and TB] clinical chart). The official DoH stationery is not currently available online. Please contact the KZN Department of Health or local district health offices for availability.

Reference

<table>
<thead>
<tr>
<th>Clinic file No</th>
<th>Name</th>
<th>ID Number</th>
<th>Date of initiation</th>
<th>Regimen</th>
<th>Last VL</th>
<th>Last VL date</th>
<th>Next VL</th>
</tr>
</thead>
</table>

FIGURE A.1 Baseline chart audit register.

<table>
<thead>
<tr>
<th>Date</th>
<th>Name and ID</th>
<th>Barcodes/unique patient identifier</th>
<th>Results and dates</th>
<th>Comments</th>
</tr>
</thead>
</table>

FIGURE A.2 Viral load sample register.
Objectif: Dans le but de se rapprocher de l’atteinte de la troisième cible des objectifs 90-90-90 du Programme commun des Nations Unies sur le VIH/Sida (ONUSIDA), nous avons prospectivement mis en œuvre un programme « champion de la charge virale » (VLC) visant à améliorer le suivi de la charge virale (VL) et la reconnaissance de l’échec du traitement.

Schéma : Trois centres à eThekwini, Kwa-Zulu Natal (volume faible, moyen et élevé, soit 9184 patients au total), ont été chacun affectés au VLC. Nous employons une analyse descriptive (audit de dossiers) afin de comparer la période avant l’intervention à la période d’un an qui a suivi l’intervention. Le nombre de patients ayant eu un test VL 6 et 12 mois après l’intervention a été calculé comme une proportion de test VL exigibles à ces dates respectivement (taux d’achèvement du VL).

Résultats : Le taux d’achèvement du VL avant la mise en route dans trois sites a été de 68% (140/205 patients), 54% (84/155 patients) et 64% (323/504 patients), respectivement, et le taux d’achèvement à 6 mois après la mise en œuvre a augmenté à 83% (995/1194 patients), 90% (793/878 patients) et 99% (3101/3124 patients), respectivement ($P < 0.0001$ pour chaque site). Les taux d’achèvement du VL sont restés significativement plus élevés à 12 mois après la mise en œuvre, avec un taux cumulé moyen du VL >90% dans toutes les structures.

Conclusion : Nous avons montré la qualité d’une intervention d’amélioration réussie à multiples facettes, centrée sur le VLC au niveau des centres qui—à plus grande échelle—a des implications majeures pour l’atteinte de la troisième cible 90-90-90 de l’ONUSIDA.