Skip to main content
padlock icon - secure page this page is secure

A Disparity Refinement in Stereo Matching based on Mean-shift Segmentation and Spatiotemporal Domain

Buy Article:

$22.00 + tax (Refund Policy)


A stereo matching algorithm is used to find the best match between a pair of images. To compute the cost of the matching points from the sequence of images, the disparity maps from video streams are estimated. However, the estimated disparity sequences may cause undesirable flickering errors. These errors result in low visibility of the synthesized video and reduce video coding. In order to solve this problem, in this article, the authors propose a spatiotemporal disparity refinement on local stereo matching based on the segmentation strategy. Based on segmentation information, matching point searching, and color similarity, adaptive disparity values to recover the disparity errors in disparity sequences can be obtained. The flickering errors are also effectively removed, and the boundaries of objects are well preserved. The procedures of the proposed approach consist of a segmentation process, matching point searching, and refinement in the temporal and spatial domains. Experimental results verify that the proposed approach can yield a high quantitative evaluation and a high-quality disparity map compared with other methods.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Computer Science and Information Engineering, National Formosa University, 64, Wenhua Rd., Huwei, Yunlin 632, Taiwan

Publication date: March 1, 2020

This article was made available online on March 13, 2020 as a Fast Track article with title: "A Disparity Refinement in Stereo Matching based on Mean-shift Segmentation and Spatiotemporal Domain".

More about this publication?
  • The Journal of Imaging Science and Technology (JIST) is dedicated to the advancement of imaging science knowledge, the practical applications of such knowledge, and how imaging science relates to other fields of study. The pages of this journal are open to reports of new theoretical or experimental results, and to comprehensive reviews. Only original manuscripts that have not been previously published, nor currently submitted for publication elsewhere, should be submitted.

    IS&T's JIST-first publication option allows authors wishing to present their work at conferences, but have a journal citation for their paper, to submit a paper to JIST that follows the same rigorous peer-review vetting and publication process as traditional JIST articles, but with the benefit of a condensed time-to-publication time frame and guaranteed conference presentation slot.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Terms & Conditions
  • Privacy Policy
  • Information for JIST-First Authors
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more