Skip to main content
padlock icon - secure page this page is secure

Open Access Analyzing the decoding rate of circular coding in a noisy transmission channel

Download Article:
 Download
(PDF 1,358.9 kb)
 
Embedding information into a printed image is useful in many aspects, in which reliable channel encoding/decoding systems are crucial, since there is information loss and error propagation during transmission. Circular coding is a general twodimensional channel coding method that allows data recovery with only a cropped portion of the code, and without the knowledge of the carrier image. While some traditional methods add redundancy bits to extend the length of the original massage length, this method embeds message into image rows in a repeated and shifted manner with redundancy, then uses the majority votes of the redundancy bits for recovery. In this paper, we developed a closed-form formula to predict its decoding success rate in a noisy channel under various transmission noise levels, using probabilistic modeling. The theoretical result is validated with simulations. This result enables the optimal parameter selection in the encoder and decoder system design, and decoding rate prediction with different levels of transmission error.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: circular coding; decoding rate estimation; simulation validation

Document Type: Research Article

Publication date: January 26, 2020

This article was made available online on January 26, 2020 as a Fast Track article with title: "Analyzing the decoding rate of circular coding in a noisy transmission channel".

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more