Skip to main content
padlock icon - secure page this page is secure

Open Access JPEG Steganalysis Detectors Scalable With Respect to Compression Quality

Download Article:
(PDF 767 kb)
Practical steganalysis inevitably involves the necessity to deal with a diverse cover source. In the JPEG domain, one key element of the diversification is the JPEG quality factor, or, more generally, the JPEG quantization table used for compression. This paper investigates experimentally the scalability of various steganalysis detectors w.r.t. JPEG quality. In particular, we report that CNN detectors as well as older feature-based detectors have the capacity to contain the complexity of multiple JPEG quality factors within a single model when the quality factors are properly grouped based on their quantization tables. Detectors trained on multiple JPEG qualities show no loss of detection accuracy when compared with dedicated detectors trained for a specific JPEG quality factor. We also demonstrate that CNNs (but not so much feature-based classifiers) trained on multiple qualities can generalize to unseen custom quantization tables compared to detectors trained for specific JPEG qualities. Their ability to generalize to very different quantization tables, however, remains a challenging task. A semi-metric comparing quantization tables is introduced and used to interpret our results.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: CNN; Deep learning; Diverse source; JPEG; Quality factors; Steganalysis

Document Type: Research Article

Publication date: January 26, 2020

This article was made available online on January 26, 2020 as a Fast Track article with title: "JPEG steganalysis detectors scalable with respect to compression quality".

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more