Skip to main content
padlock icon - secure page this page is secure

Open Access Real-time traffic sign recognition using deep network for embedded platforms

Download Article:
 Download
(PDF 1,068.1 kb)
 
Road traffic signs provide vital information about the traffic rules, road conditions, and route directions to assist drivers in safe driving. Recognition of traffic signs is one of the key features of Advanced Driver Assistance Systems (ADAS). In this paper, we present a Convolutional Neural Network (CNN) based approach for robust Traffic Sign Recognition (TSR) that can run real-time on low power embedded systems. To achieve this, we propose a twostage network: In the first stage, a generic traffic sign detection network localizes the position of traffic signs in the video footage, and in the second stage a country-specific classification network classifies the detected signs. The network sub-blocks were retrained to generate an optimal network that runs real-time on the Nvidia Tegra platform. The network?s computational complexity and the model size are further reduced to make it deployable on low power embedded platforms. Methods like network customization, weight pruning, and quantization schemes were used to achieve an 8X reduction in computation complexity. The pruned and optimized network is further ported and benchmarked on embedded platforms like Texas Instruments Jacinto TDA2x SoC and Qualcomm?s Snapdragon 820Automotive platform.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Convolutional Neural Network; Sparsity; Traffic Sign Recognition

Document Type: Research Article

Publication date: January 13, 2019

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more