Skip to main content
padlock icon - secure page this page is secure

Open Access Thin Form-Factor Super Multiview Head-Up Display System

Download Article:
 Download
(PDF 13,423 kb)
 
We propose a virtual-image head-up display (HUD) based on the super multiview (SMV) display technology. Implementation-wise, the HUD provides a compact solution, consisting of a thin form-factor SMV display and a combiner placed on the windshield of the vehicle. Since the utilized display is at most few centimeters thick, it does not need extra installation space that is usually required by most of the existing virtual image HUDs. We analyze the capabilities of the proposed system in terms of several HUD related quality factors such as resolution, eyebox width, and target image depth. Subsequently, we verify the analysis results through experiments carried out using our SMVHUD demonstrator. We show that the proposed system is capable of visualizing images at the typical virtual image HUD depths of 2–3m, in a reasonably large eyebox, which is slightly over 30cm in our demonstrator. For an image at the target virtual image depth of 2.5m, the field of view of the developed system is 11°x16° and the spatial resolution is around 240x60 pixels in vertical and horizontal directions, respectively. There is, however, plenty of room for improvement regarding the resolution, as we actually utilize an LCD at moderate resolution (216ppi) and off-the-shelf lenticular sheet in our demonstrator.
No References for this article.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 3D display; Augmented reality; Head-up display; Super multiview; Windshield display

Document Type: Research Article

Publication date: January 13, 2019

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more