Skip to main content
padlock icon - secure page this page is secure

Open Access Separable Models for cone-beam MBIR Reconstruction

Download Article:
 Download
(PDF 1,737.8 kb)
 
Cone-beam computed tomography (CT) is an attractive tool for many kinds of non-destructive evaluation (NDE). Model-based iterative reconstruction (MBIR) has been shown to improve reconstruction quality and reduce scan time. However, the computational burden and storage of the system matrix is challenging. In this paper we present a separable representation of the system matrix that can be completely stored in memory and accessed cache-efficiently. This is done by quantizing the voxel position for one of the separable subproblems. A parallelized algorithm, which we refer to as zipline update, is presented that speeds up the computation of the solution by about 50 to 100 times on 20 cores by updating groups of voxels together. The quality of the reconstruction and algorithmic scalability are demonstrated on real cone-beam CT data from an NDE application. We show that the reconstruction can be done from a sparse set of projection views while reducing artifacts visible in the conventional filtered back projection (FBP) reconstruction. We present qualitative results using a Markov Random Field (MRF) prior and a Plug-and-Play denoiser.

13 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: COMPUTATIONAL IMAGING; CONE-BEAM MBIR; MODELING

Document Type: Research Article

Publication date: January 1, 2018

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more