Skip to main content
padlock icon - secure page this page is secure

Open Access Accelerating Iterative Image Reconstruction via Adaptive Surrogate Functions

Download Article:
 Download
(PDF 1,565.6 kb)
 
Three-dimensional statistical iterative reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by minimizing a cost function that models the physics and statistics of the data acquisition process in x-ray CT. SIR algorithms are important for a wide range of applications including nonstandard geometries arising from irregular sampling, limited angular range, missing data, and low-dose CT. For iterative image reconstruction algorithms to be deployed in clinical settings, the images must be quantitatively accurate and computed in clinically useful times. We describe an acceleration method that is based on adaptively varying an update factor of the additive step of the alternating minimization (AM) algorithm. Our implementation combines this method with other acceleration techniques like ordered subsets (OS) which was originally proposed for transmission tomography by Ahn, Fessler et. al [1]. Results on both an NCAT phantom and real clinical data from a Siemens Sensation 16 scanner demonstrate an improved convergence rate compared to the straightforward implementations of the alternating minimization (AM) algorithm of O'Sullivan and Benac [2] with a Huber-type edge-preserving penalty, originally proposed by Lange [3]. Our proposed acceleration method on average yields 2X acceleration of the convergence rate for both baseline and ordered subset implementations of the AM algorithm.

17 References.

No Supplementary Data.
No Article Media
No Metrics

Keywords: ADAPTIVE SURROGATE FUNCTIONS; COMPUTATIONAL IMAGING; ITERATIVE RECONSTRUCTION

Document Type: Research Article

Publication date: January 1, 2018

More about this publication?
  • For more than 30 years, the Electronic Imaging Symposium has been serving those in the broad community - from academia and industry - who work on imaging science and digital technologies. The breadth of the Symposium covers the entire imaging science ecosystem, from capture (sensors, camera) through image processing (image quality, color and appearance) to how we and our surrogate machines see and interpret images. Applications covered include augmented reality, autonomous vehicles, machine vision, data analysis, digital and mobile photography, security, virtual reality, and human vision. IS&T began sole sponsorship of the meeting in 2016. All papers presented at EIs 20+ conferences are open access.

    Please note: For purposes of its Digital Library content, IS&T defines Open Access as papers that will be downloadable in their entirety for free in perpetuity. Copyright restrictions on papers vary; see individual paper for details.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more